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THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF TUNNEL WALLS
ON THE FORCES ON AN OSCILLATING AIRFOIL IN TWO-DIMENSIONAL
SUBSONIC COMPRESSIBLE FLOW !

By Harry L. Runyax, Doxanp 8. Woorstoy, and A, Geranp RaiNey “

SUMMARY

This report presents a theoretical and experimental investi-
gation of the effect of wind-tunnel walls on the air forces on an
oscillating wing in two-dimensional subsonic compressible
fow. A method of solving an integral equation which relates
the downwash on a wing to the unknown loading is given, and
some comparisons are made between the theoretical results and
the experimental results. A resonance condition, which was
predicted by theory in a previous report (NACA Rep. 1150),
is shown experimentally to exist. In addition, application of
the analysis is made to @ number of examples in order to illus-
trate the influence of walls due to variations in frequency of
oscillation, Mach number, and ratic of tunnel height to wing
semichord. .

INTRODUCTION

In the evaluation of results obtained by measurcment of
the forces on 8 wing in a wind tunuel, the question of the
effect of the tunnel walls arises. In the case of steady flow
the problem has been extensively investigated and, in gen-
eral, relatively simple factors have been determined which
can be used to modify measurements of the forces on a wing
in a tunnel to correspond to free-atr conditions. However,
the corresponding problem of the effect of walls on an os-
cillating airfoil has received relatively little attention, par-
ticularly in the case of compressible flow. The present
report concerns the wall effects in the oscillating case and
treats the problem in two-dimensional subsonic compressible
flow. .

In incompressible flow, theoretical treatments of wall
effects on oscillating wings have been made by several in-
vestigators and reported in references 1, 2, and 3. These
investigators have shown generally that the tunncl-wall
effects are a maximum for some small values of the reduced
frequency and that the wall effects become negligible as the
reduced frequency is increased. Extension of the theoretical
treatment of the problem to include the effects of compressi-
bility of the fluid has been reported in reference 4. In this

reference, it is shown that, in addition to the large effect
noted at low values of the reduced frequency, under certain
conditions, large effects of the walls may be encountered at
higher values of the reduced frequency. These effects are
due to an acoustic resonant phenomenon which occurs when
a disturbance from the oscillating wing is reflected from the
tunnel wall back to the wing with such a phase relationship
that it reinforces a succeeding disturbance.

In reference 4, the problem was expressed as an integral
equation which relates the known downwash distribution
over the airfoll to the unknown lift distribution. One pur-
pose of the present report is to discuss further the integral
equation and to demonstrate a method of solving it. A
second purpose is to present some results showing wall effects
caleulated by this procedure and, in some cases, Lo compare
the calculated results with experimental results.  This phase
of the investigation is given in three parts: (1) A comparison
between analvtically and experimentally determined values
for the lift and moment on a wing oscillating in pitch at
several subsonic Mach numbers; (2) an analytical study of
the effects of a variation in Mach number for a constant ratio
of tunnel height to wing semichord; and (3) an analytical
study of the effects of a variation in the ratio of tunnel height
to wing semichord. Portions of this material have been
reported previously in reference 5 and are included in the
present report in order to provide a more extensive and
unified presentation.

As a check, the integral equation for the downwash on a
wing oscillating between walls in a compressible medium is
reduced to the zero-frequency condition and is given in the
appendix. The resulting expression is in agreement with
steady-state results.

The ealculation procedure and the results contained in this
report are of significance for such problems as the experi-
mental measurement of the forces on an oscillating airfoil,
the determination of wing-flutter characteristics in wind
tunnels, and also in certain possible types of flutter of airfoils
in cascade.

t Supersedes NACA Technical Note 3416 by Harry L. Runyan, Donald 8. Woolston, and A. Gerald Rainey, 1955,
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SYMBOLS

veloeity of sound, ft/sce

coeflicients in series expression for
lift distribution (eq. (16)), where
n=0,1,2, ...

wing semichord, ft

displacement of wing in vertical
translation, ft

height of tunnel, ft

height of tunnel referred to wing
semichord

Hankel functions of the second kind

reduced-frequency parameter, bw/U

kernel of integral equation

lift distribution, lb/ft/unit span

acrodynamic lift foree per unit span
due to pitch

acrodynamic lift force per unit span
due to translation

aerodynamic moment per unit span
due to pitch

acrodynamic moment per unit span
due to translation

Mach number, Ula

wlere n=1,2,3,

stream velocity in chordwise direc-
tion, ft/sec

vertical inducec velocity (perpen-
dicular to chord), ft/scc

axis of rotation measured from mid-
chord, positive rearward, based on
semichord

Cartesian coordinates

angular displacement of wing in
pitch, radians

fluid density, slugs/eu {t

phase angle between lift force and
position of pitching wing, deg

phase angle between lift force and
position of translating wing, deg

phase angle between moment and
position of pitching wing, deg

phase angle between moment and
position of translating wing, deg

circular frequency of oscillation,
radians/sec
circular frequency at resonance,
radians/sec
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Ap pressure difference between upper
and lower surface, 1b/sq ft

Primed quantities refer to a wing in free air,
ANALYTICAL INVESTIGATION

This section is concerned with the development of a method
for solving the integral equation, originally derived in refer-
ence 4, which relates the downwash to the loading on an
oscillating wing. The basic integral equation and its kernel
is given by equations (1) and (2). Reduction of the kernel
is made in equations (3) to (10). Alternative series expres-
sions for the kernel which are suitable for numerical computa-
tion are given by equations (11) to (15). The loading on the
wing is given by equation (16), the downwash expression by
equations (18) and (19), and finally the lift and moment
expressions by equations (20).

THE INTEGRAL EQUATION AND ITS KERNEL FUNCTION

The integral equation.—The integral equation of reference
4 for the vertical veloeity or downwash of an oscillating airfoil
between plane walls may be written as

1

w(.r,):p“’—;2 f Le)K(, )+ KMz, Dldn (1)
where w(z) is the known vertical velocity (or known motion
of the wing) and L(z) is the unknown lift distribution or the
local strength of a distribution of oscillating pressure doublets.
The functions within the brackets comprise the kernel func-
tion of the integral equation and appear formally as

i
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The first function K(M, 2) corresponds to the kernel for the
frec-air condition as given by Possio (ref. 6). The second
funciion K(M, 2, H), containing the infinite summation, is
the additional part of the kernel arising from the effect
of the walls. Physically, a kernel function represents the
contribution to the vertical velocity at a field point due to a
pulsating pressure doublet of unit strength located at any
other point in the ficld. For the particular case represented
by equations (2), the kernel function gives the vertical veloc-
ity in the plane of a wing located in the center of the tunuel.
The expression K(M, z) gives the downwash of a doublet in
ihe plane of the wing, whereas the expression K(M, z, H)
gives the downwash due to the system of images which mathe-
matically represents the walls.

Reduction of the kernel function—The integrals contained
in the expressions for the kernel function in equations (2) are
inproper because they have an infinite limit and also be-
cause, at certain points, the integrands become singular.
This seciion is concerned with the reduction of these integrals
to a form more amenable to computation.
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By making use of the fact that the Hankel functions in cquations (2) satisfy the identity
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The last integral of equation (5) may be written in two parts
as
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The first integral on the right-hand side of equation (6) will
be left temporarily in integral form and will be treated in the
following section. (See evaluation of S; following eq. (13).)

The second integral on the right-hand side of cquation (6)
has not been integrated in closed form; however, in wind-

tunnel problems it can be handled conveniently by approxi- -

mate methods. (An alternative means of treating this inte-
gral, which avoids the approximation but is somewhat more
tedious, will be indicated in the discussion following eq.
14(c).) A practical assumption which is often made in the
analysis of the effect of wind-tunnel walls is that the tunnel
height is considered large compared with the wing semichord.
With this assumption the argument of the Hankel funetion in
equation (6) can be written as (in the limit as y—0)

Mt oy =% pur || ) 41 =20

&
provided that o H<<1
This approximation implies that the airfoil images, and,
particularly the closest image n=1, are a sufficient distance
from the airfoil so that the actual distance £+ g2(nH)?

may be replaced by the vertical distance gnH of the image
above the airfoil. Of course, this approximation does not
hold for Mach numbers close to or equal to unity. With this
approximation, the second integral of equation (6) can be
expressed as
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and these equations may be used to express equation (4) as
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Equation (8), together with the definition of equations (9)
and (10), permits the determination of the effeet of tunnel
walls on a lift distribution L{8,) for a given downwash distri-
bution w(x). The integral equation for the case of no tunuel
walls cheeks the results of Possio (vef. 6).  For the case with
walls and for the limiting steady-flow case of zero frequency,
it is possible to obtain a mathematieal cheek with some
existing results; this cheek is shown in the appendix.
Alternative series expressions for kernel.—Although the
form of the kernel K (M, z,IT), given by equation (10), could
be used for caleulation, alternative series which are more
highly convergent may be used and are given in this section.
The kernel K(M,z,I1) is the sum of four infinite series
which can he written as
KM,z ;H)— (ClSl+QS + 3834 CuSy) (11)
where the S,’s denote the indicated infinite summations of
equation (10) and the (%)’s the respective multipliers.
Series S, and S; of equation (11) may be put in a more
rapidly convergent form according to Infeld, Smith, and
Chien (ref. 7). When the variables p and e are introduced,

where
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\1 — o]
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where Euler’s constant Y=0.577215.
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Series S
Sy (eq.
obtain

may be evaluated by utilizing the expression for
(12)) and integrating the resulting expression to

o ik, o
S3=f S (1) Ho® ”‘,
0

n=1

® _i]: A
Sy=—1 f B <M{s> Gt

28“’

”“”JOWH>Q» kH

VETB@H)Y |t (14a)

J o ﬁ ﬂ”\/( n+1)"( —(/.-11):]dE (14b)
i)
__ B 1+8
Sy=—pplose "y +
Qiﬂi o 1 ) -M_
M &= 2 Y 2| gH
AR () et y—a+(5) | °
S 00
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it is of interest to note that series S may be employed in
an alternative means of integrating equation (7). For
application to wind-tunnel problems, where the ratio of
tunnel height to wing semichord is small, or in application
to cascade problems, the approximation employed in integrat-
ing equation (7) becomes less valid. It is possible to avoid
the use of the approximation by writing the integral of
equation (7) in a form which is identical to that of equations
(14a) and (14b) with the exception of the upper limit. The
integral containing the Hankel function can be evaluated
by employing the tables of Schwarz (ref. ). The second
integral, containing only an exponential term, can be in-
tegrated in closed form, as was done to obtain equation (14c).

Series Sy may be evaluated in a direet manner by employ-
ing tables of the Hankel function and by using for large
values of the argument the approximation

. — 3
I{‘(g)(plﬂ,,)z_\/ 2 . (ulﬂn—; ")

Tufl,

(15)

With the aid of series Sy, S, S;, and Sy, the ]\611101 K(M,z,H)
may be evaluated.

METHOD OF SOLUTION

A method of using equation (8) to determine the aero-
dynamic forces on a wing oscillating in the presence of plane
walls is now discussed. The method under consideration is
one of collocation similar to that used hy Possio (vef. 6)
and Frazer (ref. 9) for the case of no walls. The approach
involves the assumption of an appropriate series expression
for the lift distribution, substitution of this series in the
integral equation for the downwash, and calculation of the
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downwash at arbitrarily selected points on the chord (con-
trol points). Thus equation (8) is reduced to a sct of simul-
taneous equations, the unknowns of which are the cocfficients
of the assumed expression for the loading.

Expression for the loading.—The expression which is
assumed for the lift distribution is a trigonometric series
expansion which satisfies the Kutta condition at the trailing
edge and which has the proper type of singularity at the
leading edge. This expression is

L(x3)=A0 cot ?—0—{—2 A, sin nfy=L{8,) (16)
pU 2 n=1
where z)=—cos 6, and the A,’s are unknown coefficients

to be determined in accordance with the downwash w(s),
which is known from the motion of the wing. It is desir-
able to rewrite equation (8) in terms of the wvariable 6,
as follows:

w(x)=Uk [f TL(OO)K(]M ,2)sin ﬁodﬁo-}-wa(ﬁo)K (M,z,H)sin 00({00]
1] 0
(17)

The first integral on the right-hand side of equation (17)
is the integral expression first derived by Possio (ref. 6) for
the condition of no walls, Its solution has been treated by
several investigators (see, for example, ref. 9) and will not
be discussed herein. It can be expressed entirely in terms
of the unknown coefficients A, of equation (16). The sec-
ond integral of equation (17) may be evaluated by the use
of equations (12), (13), (14), and (15).

Determination of the aerodynamic forces.—The integrals
of equation (17) are determined for a selected number of
control points and equated to the expression for the down-
wash, The expression relating the downwash to the motion
of a wing translating (k) and pitching (e} about an axis
located at x, is

w(z)=h+Ua+blz—z,)é (18)
or, with the assumption of harmonic motion,
w@)_ b Tz
i =ik b—l—[l—l—zk(z X)) (19)

Equation (19) is used to calculate w(z) for values of » ap-
propriate to each of the selected control points. A set of
simultaneous equations can then be written, the number of
which corresponds to the number of control points employed
and (conveniently) to the number of terms retained in the
series for L(f,). The unknown coefficients may now be
determined by solving these simultaneous equations. The
total lift and moment about the midchord are given in terms
of the coefficients A, through the relations

—L, 1 1
itz (4 40)

M, 1 1
7rpb2U2_§ <A0+§ A2>

(20)

I

Effect of the number of control points considered.—An
investigation was made of the number of terms of the series for
the lift distribution (eq. (16)) and thus of the number of
control points required to obtain satisfactory accuracy.
Calculations were performed for a particular case by in-
creasing the number of control points and the number of
terms of the loading series until the solutions were in reason-
able agreement. For the case considered, three terms of
the series for the lift and three control points at the quarter-,
half-, and three-quarter-chord positions gave satisfactory
results.  The consideration of two additional control points
at the leading and trailing edges, together with two addi-
tional terms of the lift series, made no significant change in
the results. For high values of the reduced-frequency
parameter k, the use of additional control points might be
necessary.

The procedure just discussed involves consideration of a
continuous distribution of pressure doublets over the chord.
Calculations requiring much less computing can be made by
considering the chordwise loading to be concentrated in a
single doublet located at the quarter chord and by satisfying
the downwash at the three-quarter chord. In the case of
the lift, this approach has been found to give fairly good
agreement with the results of the more elaborate calcula-
tions except in the vieinity of the resonant frequency.

THE ANALYTICALLY INDICATED RESONANCE PHENOMENON

Two-dimensional tunnel.—By examination of equations
(12) and (13), it may be scen that the series S, and S; become
infinite when

4p*=(2n—1)2
or where
c%lzrﬁ@n—l)

n=1,2,3, . . .) (21)
At these critical values of the frequency parameter, the
expression for the kernel K(3,z,H) (eq. (11)) becomes
infinite for all values of . Physically, this condition
represents a resonance in the tunnel involving a transverse
oscillation of the moving air hetween the walls.

The fundamental or smallest critical values of wH/a
corresponding to n=1 in equation (21) are shown plotted as
functions of Mach number Af in figure 1. Equation (21)
and figure 1 show that finite values of the eritical frequency
exist for the condition M=0, U=0, and e>w». These
conditions correspond to a compressible fluid at zero velocity
in the tunnel. As the Mach number is increased, the
critical-frequency parameter decreases rapidly and becomes
zero at a Mach number of unity.

As indicated by equation (1), the product of the lift and
the kernel function must remain equal to the vertical
veloeity over the wing; this veloeity is defined by the motion
of the wing and remains finite.  The product of the lift and
the kernel funetion can remain finite only if the lift ap-
proaches zero as the kernel becomes infinite. This condition
in the tunnel is analogous to the well-known case of a simple
undamped-spring-mass system for which, at the resonant
frequency, theory predicts an infinite deflection of the mass
occurring even with a forcing function of small amplitude.
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Circular tunnel.—A resonance can also be demonstrated for
the infinite circular tunnel. The nature of the boundary-
value problem, for this case, makes it possible to separate
variables; therefore, the governing partial-differential cqua-
tion can be reduced to Bessel’s equation. (See, for instance,
ref. 10.) The resonant frequencies are then found as the
roots of the equation

, (@D
L <ﬁ>=°

wD
—2;:/3"6

(n=0,1,2, . . .)

or

where oJ, represents the Bessel function of the first kind, D
is the tunnel diameter, and p, is the root of the equation

J (Pn) =0

Values for p, for the first several modes are p,=1.84, 3.05,
and 4.17. Note that, for a circular tunnel having a diameter
equal to the height of a plane tunnel, the fundamental
frequency is 3.68/r=1.17 higher than resonant frequency
in the plane tunnel discussed in this report.

EXPERIMENTAL INVESTIGATION

WIND TUNNEL

The experimental part of the investigation of the effect
of tunnel walls on the forces acting on an oscillating airfoil
was conducted in the Langley 2- by 4-foot flutter research
tunnel. For these tests, a rectangular test section having
dimensions of 2 feet by 3.8 feet was used. This tunnel is of
the closed-throat, single-return type and cmploys either
air or Freon-12 as a testing medium at pressures from 1
atmosphere down to about % atmosphere.

It has been shown previously that the resonant frequency
varies directly as the speed of sound. Inasmuch as Freon-12
has a speed of sound equal to about one-half that of air, the
experiments to be discussed were conducted in Freon-12
so that the resonant frequency could be surveyed within
he frequency limitations of the equipment.

MODEL AND OSCILLATING MECHANISM

Figure 2 is a schematic drawing of the test section with
the model and oscillating mechanism installed. The model
had a chord of 1 foot and an NACA 65-010 airfoil section;
it completely spanned the 2-foot dimension of the test
section. The gaps between the model and the tunnel wall
were sealed by end plates which rotated with the model.
The model, driven symmetrically from both ends, was
oscillated in pitch about the midchord by a direct-drive
eccentric-cam system powered by an induction motor with
variable frequency supply.

INSTRUMENTATION

The lift and moment on the wing were obtained by
electrical integration of the outputs of 12 model 49-TP

378599—56

2

End plates

Drive shaft

— Angle-of-attack adjustment

Orive column

Drive motor cE : Eccenfric cam ;
o~ .

L-87584

Bearing

Fravre 2.—Schematic drawing of test section with model and oseil-
lating mechanism installed.

NACA miniature clectrical pressure gages. The pressure
gages, which are described in considerable detail in reference
11, were located at the center of the span at 2.5, 5, 10, 15,
20, 30, 40, 50, 60, 70, 80, and 90 percent of the chord. Each
gage was arranged to indicate the difference in pressure
between orifices on the upper and lower surfaces. Electrical
integration techniques used in these experiments are dis-
cussed in reference 12. The so-called square-wave method
of weighting was used; that is, the pressure indicated by
each gage was assumed to represent the pressure acting
over a portion of the chord extending one-half the distance
to the next gage both forward and rearward. For example,
the fraction of the chord assigned to the first gage was 3.75
percent and to the sixth gage was 10 percent. Some of the
implications of this method of integration will be discussed
in a subsequent section.

The angular displacement at the midspan position was
indicated by resistance-wire strain gages attached to a
torque rod running through the center of the hollow wing.
One end of the torque rod was fixed to the center of the
wmg and the other end was fixed to the tunnel wall.

A schematic diagram of the instrumentation is shown in
figure 3. The magnitude of the vector representing the fun-
damental component of lift or moment and angular displace-
ment was indicated on an alternating-current vacuum-tube
voltmeter attached to the output of a variable-frequency,
narrow-pass-band filter. In essence, the filter performed
the function of a Fourier analysis in that both random com-
ponents and higher harmonics were removed from the signal.
In order to measure the phase angle between lift or moment
and the angular displacement, the output of the filter was
fed into a pulse-shaping circuit designed to convert the sinus-
oidal signals into pulses corresponding in time to the “cross-
over’ points of the original signal.  The pulses were then fed
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Frsrre 3.—Schematie diagram of instrumentation,

into an clectronic chronograph that accurately indicated the
time interval between the leading pulse which started the
chronograph and the lagging pulse which stopped it. The
ratio of this time interval to the period of oscillation, when
multiplied by 360°, yvields the phase angle in degreces. The
period and frequency of oscillation were determined by start-
ing and stopping the chronograph with the angular-dis-
placement signal. In order to minimize the effects of small
differences in components between the two eircuits, a “tare”
switch was provided which fed a single signal (the angular
displacement) through both circuits. The resulting phase
angle represented the phase shift introduced by the filters
and pulse-shaping cireuits.

TEST CONDITIONS

The Mach number of the tests was varied from 1/=0.35 to
M=0.7 and the Reynolds number was held constant at about
5X10° by varying the density. The frequency of oscilla-
tion was varied from 0 to 60 cycles per sccond, and the mag-
nitude of angular displacement was about 1.2° except for
some lift data at M=0.71 which was obtained at an angular
displacement of about 2.4°,

DISCUSSION OF RESULTS

The theory and calculation procedure and the experimental
technique discussed previously for the determination of the
forces acting on a wing oscillating between walls have been
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applied to a number of specific examples. The investigation
has been divided into three parts: (1) A comparison is
made of analytical and experimental results obtained for
a pitching wing for several subsonic
Mach numbers, (2) theoretical results for the effects of a
variation in Mach number at constant tunnel height are
given for a pitching wing and also for a wing undergoing
vertical translation, and (3) theoretical results for the effects
of a variation in the ratio of tunnel height to wing semichord
are presenied for particular values of Mach number.
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COMPARISON OF THEORY AND EXPERIMENT

In figure 4 a comparison is made of analytical and experi-
mental results for a wing oscillating in pitch about its mid-
chord. Figures 4 (a), 4 (b), 4 (¢), and 4 (d) apply, respec-
tively, to Mach numbers of 0.35, 0.5, 0.6, and 0.7. The
resulis apply to a ratio of tunnel height to wing semichord
H of 7.60.

The plots on the left-hand side of each figure show the
magnitudes of the forces and moments as a function of the
frequeney of oscillation, whereas those on the right-hand
side show the corresponding phase angles. The magnitudes
are presented as ordinates in the form of ratios |L./L.| and
[M./M,|. In these ratios, the quantities L, and M, are,
respectively, the lift foree and the moment on a wing in a
tunnel; L,” and A, are the theoretical lift and the theoreti-
cal moment on a wing in free air. The cffect of the tunnel
walls appears, therefore, as a deviation from unity of the
ratios [L./L,'| and |A/M,'| when L, and M, are the theo-
retically derived forces and moments. When L, and M,
represent the experimental forces and moments, the devia-
tion from unity may not be completely attributed to the
effect of tunnel walls because such factors as airfoil thick-
ness and viscosity may cause deviation from the elementary
theory. The abscissa in the figures is the ratio of the fre-
quency of the pitehing oscillation to a frequency caleulated
for the resonant condition.

Excellent agreement between theory and experiment is
obtained for the phase angles, in most cases, for both the
lift and the moment. Quantitatively, however, the agree-
ment between theory and experiment for the magnitudes
of the forces is not as good, although very similar trends
are demonstrated; in most cases, a systematic difference
appears. Some possible sources of the differences between
theory and experiment are discussed in the following section.

Examination of figure 4 reveals that the theory predicted
the resonant frequency very well. In all cases, the mini-
mum lift and moment were found to lie very close to the
analvtically indicated resonant frequency. Theoretically,
the lift and moment reduce to zero at the resonant condition.
Under actual conditions, such as finite tunnel length, trans-
mission of energy through the walls, nonlinearities at higher
amplitudes, and turbulence in the flow that gives rise to
damping, pure resonance is unobtainable. However, it
may be seen by examining figure 4 (d) that the lift and
moment were reduced to 20 percent of the values away
from resonance.




TUNNEL-WALL EFFECTS IN TWO-DIMENSIONAL UNSTEADY SUBSONIC FLOW

20 l T 40
T /
i | | .
— | 7
! f : I : i /
16 + ———t l ‘ 30 —-
EEEEE /
[ l\ ‘{, _ i _J /, S
—r /
. I \
of 1 I SH -
- ; b r] \
3= /\J\_// \ & / /P' L
o ! — o — |
= - 1R ! g 14
° ;OTO\\O\ o | g /
pres l‘ ~0-—o0- __of‘q._(;\b | d/
— ]
o —d o
| | [
: ! ‘ G
o j | A/
I — A/
; i/
L v
afp— R L /
{ '
. , | /
i s
j I
0 L |L 4‘\' -10
l
20 i ! ( o l
! i
! !
i — — 4 — -
3 ——o-—Experiment
' ——Theory, with walls
—-——Theory, free stream
16 { -10 \‘,
o\ AY
N
N
| AR5
—— 12 g -20 3
s’l;u L. —‘\RL \\
g /— 'GE h\ N
e 2 f X
- r = 3
S D__§_o_‘°‘*o—]ra_o--v"n'/°/4 § \X
5 1 ¥ | \
=2 8 + ! ! - E -30 \ ‘p
i ‘ : \
| | Y
F 1 I T
| | \
| b
4 J, -40 —+ ¥
l \
i
| lo
—+ !
(o) f , Jl J
" i J ! l —50" 1 l
0 4 8 1.2 0 4 8 1.2
Frequency ratio, gig Frequency ratio, oas

(a) M=0. 35,
Ficure 4.—Comparison of theoretical and experimental results for the magnitudes and phase angles of the lift and moment of a pitching wing.
Height-semichord ratio H=7.60.



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT 1262

10

\+ -
e — —-—0
—

1.2

\
8

.
Wres

1.2

L o
G g 5 2
Bop * % ‘ajbup asDYd bap .uE.v.w_mco asoyd N
T T | T ‘ T T
|
— — si— a
[-o—0 . T =
i | _Ey | |
o . c=s @ | :
0 . £ xx h | ®
- 4 ; E sX - . )
o\ meo, _ | _
| ° — _ _._vm_ [l e | |
I _ |
- L H SR * — - - + - ! —
Sani | untilinen c
/ | | _ ! !
. I i . ;I | .
SE o L b4 .
b “ o |
O I 4 - |
nw | ﬂ _ 7 -
- | | | §
b © < S o < w_. © <, o
[aV] [4V] -
.“|w,o_§ e ﬂe& OOI JUBUIO

Frequency ratio,

_w
Wres

Frequency ratio,

" (b)) M=0.5.

Ficure 4.—Continuned,.



e

TUNNEL-WALL EFFECTS 1IN TWO-DIMENSIONAL UNSTEADY SUBSONIC FLOW

20

y

40

—— -0

— — Experiment

Theory, with walls
- Theory, free stream

|
!
20 1

|
|
_\r

Phase angle, ¢La.' deg
o

12
S
g
B
£
8
4
|
0
16
1.2
Eul' ]
g
2 8
<
£
[«]
=
4
0

Figvre 4.—Continucd.

] ‘.
1 : gm0~
. o ~
x L NN _
t -20 | 1 T Y —
. | . °
o | 3
| S BN
3 ‘ ] i l i \l ! 4
- 1‘ i ; -40 — ‘ | ¥
L | N 3
| 1 } . ,
I
| -20
' |
; |
- —t— |
/‘1/0— o !‘/J\[ . @40 \ :
— -y R o - ~~ ‘
- ° \h —P Q \{ I U"u \
3 3
. \ < 5 o
% =3 \!
\ o
o \
| L | g 60} Q
| || 1 & ! l ‘\D
‘ : ‘ [ , LA
; ; I i\ ,
‘[ ] 1 q,___‘ U i 5
i | l d \
| ‘
| ‘ : |
| ! L I Vot H
i -80 —T {
| | | | 9|
) ! | | ’ : |
4 8 12 0 4 8 12
. w . w
Frequency ratio, Tres Frequency ratio, Fres
(¢) M=0.06.



REPORT 1262— NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

16 T 20
-—-0--~-M=0669
—-——-M= 707 % © -
—/
O o ol
d - (o]
oo . — | T
\C\\ N \ o ,//
T ) b NN
£ R <
g 8 % € 20 N
£ N\ I Y =
2 S o N\
£ 8 S .
£ S~ ~ B\
W ] v N
8 ° N \%
! S
i f \
4 Wdr -40 w =
i , 6\“
‘5\/:1 ' \E\
! ] &
Y | \
i | a
I b
0 -60 l }
20 \ [0]
f.ﬁ.'.}Experiment
——Theory, with walls
——- Theory, free streom
I [=]
6 f -20 \ .
\
I N\
| AN
[ A S
! | ‘ ™ °
1 | \ ~
, ~
3 1.2 41} _g -40 \Q\
T / ] 3 . L
g ///"4‘—0‘-0 o < 6\\ ~~
5 T O . Y d
= i ‘ Y g Q
£ 4 W, S
£ ! ] lﬁé AN J
= 8 % 3 -60 . y
\ t\\ !
! | 3
{ — . ‘
1 i ‘
i \
| ! °/° I \q
4 d| 1 -80 \
| / \ g
|/ |
‘o
Q\QD&_A
(d) } }
| ool ..
0 7] B 2 190 4 8 2
o W .
Frequency ratio, g Frequency mho,—m%s
(d) M=0.7.

Figure 4.—Conecluded.



APPENDIX

REDUCTION OF INTEGRAL EQUATION TO THE CASE OF ZERO FREQUENCY

In this appendix, the integral equation for the downwash
for a wing oscillating in a compressible medium in the pres-
ence of wind-tunnel walls is reduced to the zero-frequency
condition.

If equation (1) of the text is written as

w(ac):limpiU2 f " LagoK(M, 2)+oK (M, 2, HD]drs  (AI)
w—0 -1

and the limit taken as w—0, it will be found that all the
terms of wK (M, 2) and wK(M,2,H) vanish except terms involv-
ing H;®. These terms become infinite; however, as w—0,
the asymptotic expansion for very small values of the
argument may be used. Therefore,

Hl (2)(,“R n)_ -—-77"1,7/.12}{
and
lim wo® H,®(uR,)i M(”” %) _

w—0 n

—2Maf*(x— 1)
- al(x—wo)+B(nH)

The vertical induced velocity may then be written as

257 (—1) %r%’z(—m] dro (A2)

n=1 (x—x
or
Mab (! 1
w( )_—2pU2H —IL(IO) T (— -+
m x 1'0)
™ (@ —10)
S " BH \
2; (_‘ ) > (1_10)2 d.lo (A3)

Equation (A3) may be written as

_ —Mab 7 (r— Ty
w (.’IE)-—W L(Cl‘o) [CSCh ] dry (A4:)

The additional induced velocity due to the presence of
tunnel walls for the steady-state case in compressible flow
is given by equation (40) of reference 13. Equation (A2)

can be reduced to the same form by making the approxima-
tion that the airfoil chord is small compared with the tunnel
height.
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